Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability

Author:

Le Thanh Tuan1ORCID,Priya Jayabal Chandra2ORCID,Le Huu Cuong3,Le Nguyen Viet Linh4ORCID,Duong Minh Thai5ORCID,Cao Dao Nam6ORCID

Affiliation:

1. Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam

2. Department of Computer Science & Engineering, Mepco Schlenk Engineering College, Sivakasi, Virudhunagar, Tamil Nadu, India

3. Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

4. Faculty of Automotive Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam

5. Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

6. PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

Abstract

The escalating trends in energy consumption and the associated emissions of pollutants in the past century have led to energy depletion and environmental pollution. Achieving comprehensive sustainability requires the optimization of energy efficiency and the implementation of efficient energy management strategies. Artificial intelligence (AI), a prominent machine learning paradigm, has gained significant traction in control applications and found extensive utility in various energy-related domains. The utilization of AI techniques for addressing energy-related challenges is favored due to their aptitude for handling complex and nonlinear data structures. Based on the preliminary inquiries, it has been observed that predictive analytics, prominently driven by artificial neural network (ANN) algorithms, assumes a crucial position in energy management across various sectors. This paper presents a comprehensive bibliometric analysis to gain deeper insights into the progression of AI in energy research from 2003 to 2023. AI models can be used to accurately predict energy consumption, load profiles, and resource planning, ensuring consistent performance and efficient resource utilization. This review article summarizes the existing literature on the implementation of AI in the development of energy management systems. Additionally, it explores the challenges and potential areas of research in applying ANN to energy system management. The study demonstrates that ANN can effectively address integration issues between energy and power systems, such as solar and wind forecasting, power system frequency analysis and control, and transient stability assessment. Based on the comprehensive state-of-the-art study, it can be inferred that the implementation of AI has consistently led to energy reductions exceeding 25%. Furthermore, this article discusses future research directions in this field.  

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3