Utilization of Ecoenzyme Citrus reticulata in a microbial fuel cell as a new potential of renewable energy

Author:

Dewi Imelia1,Ambarsari Laksmi1,Maddu Akhiruddin2ORCID

Affiliation:

1. Biochemistry, IPB University Bogor

2. Physics Department, IPB University Bogor

Abstract

The world's energy needs generally come from non-renewable sources. In other circumstances, some research on renewable energy is being developed from a variety of different sources, one of which is biomass. Biomass changes the energy system towards the modernization of the bioenergy system by utilizing the concept of biochemical systems (BESs). A microbial fuel cell is known as one of the renewable technologies that convert biomass with the help of microbes to produce electricity. This research is based on a microbial fuel cell based on ecoenzyme Citrus reticulata known as Ecoenzyme fuel cell to determine the electrical value (voltage, current, and power density). Ecoenzyme was made from orange peel waste, molasses, and water with a ratio of 3: 1: 10 and fermented for a month. Meanwhile, the electrode device used was a pencil graphite. Some treatments were carried out to optimize the performance of the system based on the number of electrodes (one pair and three pairs), and the stirring conditions, stirring at 200 rpm and without stirring (0 rpm). The EFC system was run for four weeks (600 hours) with the highest voltage obtained at 650 mV and current at 29.55 mA. The ecoenzyme produced the most significant power density of 750 W/m2 in the treatment of 3 electrode pairs with a stirring speed of 200 rpm. The influence of electrodes and stirring in the MFC system upsurged the electrical value output by 53.7% for a pair of electrodes and 142% for three electrode pairs. Further development will continue to be done to improve the performance and output of the Ecoenzyme fuel cell system as a future renewable energy source in Indonesia.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3