The Effect of KMnO4 and K3[Fe(CN)6] Concentrations on Electrical Production in Fuel Cell Microbial System with Lactobacillus bulgaricus Bacteria in a Tofu Whey Substart

Author:

Muftiana Ilmi1,Suyati Linda1,Widodo Didik Setiyo1

Affiliation:

1. Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang

Abstract

Microbial Fuel Cell (MFC) is a bioelectrochemical system that utilize metabolism of microorganisms to produce electrical energy. Microbial fuel cell is a bioelectrochemical system involving redox reactions that required an oxidizing agent in the process The purpose of this study was to determine the effect of various concentration of electrolyte solution KMnO4 and K3[Fe(CN)6] on electricity produced by microbial fuel cell system with Lactobacillus bulgaricus in tofu whey substrate. The principle of this study was bioelectrochemistry that changes chemical energy into electrical energy which involves a redox reaction by utilizing microbes. This study used a microbe Lactobacillus bulgaricus and substrate tofu whey with 0.39 % carbohydrate content in dual chamber MFC system using a salt bridge as a conductor of protons from anode to cathode. Anode compartment contains a mixture of microbes that have been cultured and phosphate buffer with pH 7 while cathode compartment contained electrolytes KMnO4 or K3[Fe(CN)6] in some various concentration that is 0.25 M; 0.2 M; 0.15 M; 0.1 M and 0.01 M with added potassium phosphate buffer pH 7. The MFC system using Lactobacillus bulgaricus and substrate tofu whey with 0.39% carbohydrate content and electrolyte solution KMnO4 generated maximum potential difference of 99.2 mV at concentration of 0.2 M which was higher than system with electrolyte solution K3[Fe(CN)6] 0.2 M that produced maximum potential difference of 48.6 mV.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effect of Septage Sludge and Oxidizing Agents in the Microbial Fuel Cells Generating Electricity;Tropical Aquatic and Soil Pollution;2023-08-03

2. Effects of KMnO4 concentration on the power density and BOD/COD of tempe waste Microbial Fuel Cell (MFC);THE 4TH INTERNATIONAL SEMINAR ON CHEMICAL EDUCATION (ISCE) 2021;2022

3. Red algae (Eucheuma cottonii) extract as a substrate in microbial fuel cell technology to generate electricity;THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society;2022

4. Production of electricity and bioethanol with microbial fuel cell (MFC) technology on molasses substrate;THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society;2022

5. Utilization of Montmorillonite-Modified Earthenware from Bentonite-Ca as a Microbial Fuel Cell (MFC) Membrane Based on Tempe Liquid Waste as a Substrate;Jurnal Kimia Sains dan Aplikasi;2020-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3