Integration of Terrestrial Laser Scanning and field measurements data for tree stem volume estimation: Exploring parametric and non-parametric modeling approaches

Author:

Capalb Florin1,Apostol Bogdan2,Lorent Adrian3,Petrila Marius2,Marcu Cristiana2,Badea Nicolae Ovidiu1

Affiliation:

1. National Institute for Research and Development in Forestry “Marin Drăcea”, Voluntari, Romania; Faculty of Silviculture and Forest Engineering, “Transilvania” University of Braşov, Brașov, Romania

2. National Institute for Research and Development in Forestry “Marin Drăcea”, Voluntari, Romania

3. National Institute for Research and Development in Forestry “Marin Drăcea”, Voluntari, Romania; Faculty of Silviculture and Forest Engineering, “Transilvania” University of Braşov, 500123 Brașov, Romania

Abstract

Terrestrial laser scanning (TLS) has emerged as a powerful tool for acquiring detailed three-dimensional information about tree species. This study focuses on the development of models for tree volume estimation using TLS data for even aged Fagus sylvatica L. stands located in the western part of the Southern Carpathians, Romania. Both parametric and non-parametric modeling approaches were explored, leveraging variables extracted from TLS point clouds such as diameter at breast height (DBH), height, crown radius, and other relevant crown and height parameters. Reference data were collected through high-precision field measurements across 76 circular Permanent Sample Areas (PSA) spanning 500 m2 each. A multi-scan approach was implemented for TLS data collection, involving four scanning stations within each PSA. Concurrently, parametric (regression equations) and non-parametric (Random Forest - RF) models were applied, leveraging all TLS-derived variables to explore potential enhancements in volume estimation accuracy. Among the parametric models, the most effective performer was the one featuring solely DBH as an input variable. The RF non-parametric model yielded more accurate stem volume estimates (RMSE = 1.52 m3*0.1ha-1; RRMSE = 3.62%; MAE = 1.22m3*0.1ha-1) compared to the best-performing regression model (RMSE = 5.24 m3*0.1ha-1; RRMSE = 12.48%; MAE = 4.28 m3*0.1ha-1). Both types of models identified DBH as the most important predictive variable, while the RF model also included height and crown related parameters among the variables of importance. Results demonstrate the effectiveness of the non-parametric RF model in providing accurate and robust estimates of tree stem volume within even aged European beech stands. This highlights the significance of TLS data, increasingly employed in diverse forest inventory and management applications. Nevertheless, additional research and refinement of the proposed models are needed. This includes thorough validation across various forest ecosystems and continued efforts to enhance the accuracy of tree height determination from point cloud data.

Funder

Ministerul Cercetării, Inovării şi Digitalizării

Publisher

Marin Dracea National Research-Development Institute in Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3