Building Tree Allometry Relationships Based on TLS Point Clouds and Machine Learning Regression

Author:

Aguilar Fernando J.ORCID,Nemmaoui AbderrahimORCID,Aguilar Manuel A.ORCID,Peñalver Alberto

Abstract

Most of the allometric models used to estimate tree aboveground biomass rely on tree diameter at breast height (DBH). However, it is difficult to measure DBH from airborne remote sensors, and is common to draw upon traditional least squares linear regression models to relate DBH with dendrometric variables measured from airborne sensors, such as tree height (H) and crown diameter (CD). This study explores the usefulness of ensemble-type supervised machine learning regression algorithms, such as random forest regression (RFR), categorical boosting (CatBoost), gradient boosting (GBoost), or AdaBoost regression (AdaBoost), as an alternative to linear regression (LR) for modelling the allometric relationships DBH = Φ(H) and DBH = Ψ(H, CD). The original dataset was made up of 2272 teak trees (Tectona grandis Linn. F.) belonging to three different plantations located in Ecuador. All teak trees were digitally reconstructed from terrestrial laser scanning point clouds. The results showed that allometric models involving both H and CD to estimate DBH performed better than those based solely on H. Furthermore, boosting machine learning regression algorithms (CatBoost and GBoost) outperformed RFR (bagging) and LR (traditional linear regression) models, both in terms of goodness-of-fit (R2) and stability (variations in training and testing samples).

Funder

Regional Government of Andalusia

Generalitat Valenciana

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3