A machine learning approach to model leaf area index in Eucalyptus plantations using high-resolution satellite imagery and airborne laser scanner data

Author:

Hirigoyen Andrés,Acosta Cristina,Ariza Antonio,Vero-Martinez Maria Angeles,Rachid Cecilia,Franco Jorge,Navara-Cerrillo Rafael

Abstract

As a forest structural parameter, leaf area index (LAI) is crucial for efficient intensive plantation management. Leaf area is responsible for the energy absorption needed for photosynthetic production and transpiration, both affecting growth. Currently, LAI can be estimated either by remote-sensing methods or ground-based methods. However, unlike ground-based methods, remote estimation provides a cost-effective and ecologically significant advance The aim of our study was to evaluate whether machine learning algorithms can be used to quantify LAI, using either optical remote sensing or LiDAR metrics.in Eucalyptus dunnii and Eucalyptus grandis stands First, empirical relationships between LAI and remote-sensing data using LiDAR metrics and multispectral high-resolution satellite metrics, were assessed. Selected variables for LAI estimation were: LiDAR forest canopy cover, laser penetration index, and canopy relief ratio - from among the LiDAR data and the green normalized difference vegetation index and normalized difference vegetation index - from among the ground-based data we compared the accuracy of three machine learning algorithms: artificial neural networks (ANN), random forest (RF) and support vector regression (SVR). The coefficient of determination ranged from 0.60, for ANN, to 0.84, for SVR. The SVR regression methods showed the best performance in terms of overall model accuracy and RMSE (0.60). The results show that the remote sensing data applied through machine learning algorithms provide an effective method to estimate LAI in eucalyptus plantations. The methodology proposed is directly applicable for operational forest planning at the landscape level.

Publisher

Marin Dracea National Research-Development Institute in Forestry

Subject

Plant Science,Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3