Abstract
This study presents the simulations of a hybrid Cu2ZnSnS4-based solar cell with a planar heterojunction structure in a hybrid model (n-FTO/n-ZnO/p-PSCS/p-CZTS/p-PSCS/p-HTM) using a One-Dimensional Solar cell capacitance simulator (SCAPS-1D). . The configuration "121" of the hybridizing absorber layers of the device was simulated and related with as-Copper Zinc Tin Sulphide (CZTS). The simulation used an absorber layer with a step-length thickness of 25 nm and thicknesses ranging from 100 nm to 500 nm. The bandgap diagram, I-V characteristics curve, percentage conversion efficiencies, and the quantum efficiencies of the simulated solar cells were calculated and constructed from simulated results. The percentage conversion efficiency of 22.57%, fill factor of 49.99%, open-circuit voltage of 0.80V, and short circuit current of 25.12 mAcm-2 were obtained. The obtained photon conversion efficiency shows that the hybridization of different absorber layers was achievable. It was also established that the performance efficiencies of hybrid CZTS structure in terms of optimum thickness and sandwiched Perovskite Solar cells model (FTO/ZnO/CZTS/PSCS/CZTS/HTM) has the same efficiencies for "121 configurations". On the other hand, the efficiencies of as- CZTS structures were higher than the PSCS configuration, which might be due to SCAPS-1D as it was originally designed for Thin Films Solar cells.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献