Numerical study and optimization of GO/ZnO based perovskite solar cell using SCAPS

Author:

Johrin Norsakinah1,Chee Fuei Pien1,Nasir Syafiqa1,Moh Pak Yan23

Affiliation:

1. Physics with Electronic Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah

2. Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah

3. Water Research Unit, Faculty of Science and Natural Resources, Universiti Malaysia Sabah

Abstract

<abstract> <p>This paper focuses on the numerical study of hybrid organic-inorganic perovskite solar cells. It investigates the incorporation of a graphene oxide (GO) thin layer to enhance solar cell efficiency. The study demonstrates that the GO layer improves interaction with the absorber layer and enhances hole transportation, resulting in reduced recombination and diffusion losses at the absorber and hole transport layer (HTL) interface. The increased energy level of the Lower Unoccupied Molecular Orbital (LUMO) in GO acts as an excellent electron-blocking layer, thereby improving the V<sub>OC</sub>. The objective is to explore different structures of perovskite solar cells to enhance their performance. The simulated solar cell comprises a GO/FASnI<sub>3</sub>/TiO<sub>2</sub>/ZnO/ITO sandwich structure, with FASnI<sub>3</sub> and ZnO thicknesses adjusted to improve conversion efficiency. The impact of thickness on device performance, specifically the absorber and electron transport layers, is investigated. The fill factor (FF) changes as the absorber and electron transport layers (ETL) increase. The FF is an important parameter that determines PSC performance since it measures how effectively power is transferred from the cell to an external circuit. The optimized solar cell achieves a short-circuit current density (J<sub>SC</sub>) of 27.27 mA/cm<sup>2</sup>, an open-circuit voltage (V<sub>OC</sub>) of 2.76 V, a fill factor (FF) of 27.05% and the highest power conversion efficiency (PCE) of 20.39% with 400 nm of FASnI<sub>3</sub> and 300 nm of ZnO. These findings suggest promising directions for the development of more effective GO-based perovskite solar cells.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3