Abstract
Nano Al-matrix composites reinforced with SiC were prepared by powder metallurgy process. The percentages of added SiC were varied between 0, 2, 4, 6, and 8 wt. %. The starting powders were milled in high-energy ball mill for 10hrs to convert into nanopowders; then compacted and sintered for 1h in an argon atmosphere at 400, 500, and 570°C. X-ray technique and transmission electron-microscope were utilized to examine the prepared powders, while scanning electron-microscope was utilized to test the sintered composites. The relative density, apparent porosity, electrical conductivity, and mechanical properties (microhardness, elastic moduli, and compressive strength) of sintered composites were studied. The results showed no sign for phase changes after milling, and the SiC reinforcement was uniformly distributed in the matrix. The relative density and electrical conductivity were decreased with increasing SiC content, while the apparent porosity was increased. It is also found that the mechanical properties were improved with increasing SiC content. Also, all properties were improved with increasing sintering temperature. The hardness, compressive strength, bulk modulus of Al-8wt.% SiC composite sintered at 570°C were 885.4 MPa, 276.2 MPa, and 135.9 GPa, respectively.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献