Development, modelling and optimization of process parameters on the tensile strength of aluminum, reinforced with pumice and carbonated coal hybrid composites for brake disc application

Author:

Ibrahim Tanimu Kogi,Yawas Danjuma Saleh,Thaddaeus Julius,Danasabe Bashar,Iliyasu Ibrahim,Adebisi Adetayo Abdulmumin,Ahmadu Talib Onimisi

Abstract

AbstractThis study focuses on optimizing double stir casting process parameters to enhance the tensile strength of hybrid composites comprising aluminum alloy, brown pumice, and coal ash, intended for brake disc applications. Analytical techniques including X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the composite constituents. The Taguchi method was utilized for experimental design and optimization to determine the optimal weight compositions of brown pumice and coal ash, as well as stir casting parameters (stirrer speed, pouring temperature, and stirring duration). Regression analysis was employed to develop a predictive mathematical model for the tensile strength of the hybrid composites and to assess the significance of process parameters. The optimized composite achieved a predicted tensile strength of 186.81 MPa and an experimental strength of 190.67 MPa using 7.5 vol% brown pumice, 2.5 vol% coal ash, a pouring temperature of 700 °C, stirrer speed of 500 rpm, and stirring duration of 10 min. This represents a 52.23% improvement over the as-cast aluminum alloy’s tensile strength. Characterization results revealed that brown pumice and coal ash contain robust minerals (SiO2, Fe2O3, Al2O3) suitable for reinforcing metal matrices like aluminum, titanium, and magnesium. Thermogravimetric and differential thermal analyses demonstrated thermal stability up to 614.01 °C for the optimized composite, making it suitable for brake disc applications.

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. Blakey-Milner, B. et al. Metal additive manufacturing in aerospace: A review. Mater. Des. 209, 110008 (2021).

2. Bin-Ibrahim, M. A. A Study on Various Type of Rotor Disc Brake Using FAE Analysis, a Thesis Submitted in Fulfilment of the Requirements for Award of the Degree of Bachelor of Mechanical Engineering with Automotive Engineering (Universiti Malaysia Pahang, 2013).

3. Cueva, G., Sinatora, A., Guesser, W. & Tschiptschin, A. Wear resistance of cast irons used in brake disc rotors. Wear 255(7), 1256–1260 (2003).

4. Rong, K. F. (2014). Study and Development of Novel Composite Materials for the Application of Car Brake Rotor. Master of Philosophy thesis submitted to the department of mechanical Engineering, Curtin University. Retrieved from https://espace.curtin.edu.au/bitstream/handle/20.500.11937/2321/202749_Fu%202014.pdf

5. Toozandehjani, M. et al. Conventional and advanced composites in aerospace industry: Technologies revisited. Am. J. Aerosp. Eng 5(1), 9 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3