Crystalline as-deposited TiO 2 anatase thin films grown from TDMAT and water using thermal atomic layer deposition with in situ layer-by-layer air annealing

Author:

Wooding Jamie P.,Kalaitzidou Kyriaki,Losego Mark D.ORCID

Abstract

We report a new thermal atomic layer deposition (thermal-ALD) process including an air exposure as a third precursor to deposit crystalline TiO2 anatase thin films from tetrakis(dimethylamido)titanium(IV) (TDMAT) and water at deposition temperatures as low as 180 °C and film thicknesses as low as 10 nm. This ALD process enables TiO2-antase crystal growth during the deposition at low temperatures (< 220 °C). This additional oxidant pulse is used to fully oxidize the Ti to a 4+ state in the amorphous film, lowering the barrier to crystalline anatase formation. This new approach is informed by preliminary studies of post-deposition annealing (PDA) of thermal ALD films in both nitrogen and air atmospheres, which demonstrate the importance of having an oxidizing atmosphere to achieve the nucleation of the crystalline anatase phase. This oxidizing atmosphere is subsequently introduced into the ALD cycle as a third precursor and is shown to be more effective and efficient in promoting the crystalline transformation than even by post-deposition annealing. The crystalline anatase phase is verified by Raman spectroscopy and grazing incidence X-ray diffraction (GIXRD). The mechanism for crystallization during the TDMAT/H2O/air ALD cycle is probed by chemical state analysis via X-ray photoelectron spectroscopy (XPS). We propose that sub-oxidation in TiO2 thin films deposited by the thermal-ALD process inhibits crystallization during ALD from TDMAT/H2O chemistry. Scanning electron microscopy (SEM) is used to investigate the microstructure of these TiO2 thin films as a function of thickness (5 nm to 50 nm) and deposition temperature (180 °C to 220 °C). The reported layer-by-layer air anneal process is found to crystallize entire films in shorter total process times than thermal-ALD with ex situ post deposition annealing at identical temperatures, presumably due to the improved surface diffusion kinetics accessed during the deposition process.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3