Synthesis, molecular docking, ADMET study and in vitro pharmacological research of 7-(2-chlorophenyl)-4-(4-methylthiazol-5-yl)-4,6,7,8-tetrahydroquinoline-2,5(1H,3H)-dione as a promising non-opioid analgesic drug

Author:

Kravchenko Aleksey D.ORCID,Pyatigorskaya Natalia V.ORCID,Brkich Galina E.ORCID,Yevsieieva Larysa V.ORCID,Kyrychenko Alexander V.ORCID,Kovalenko Sergiy M.ORCID

Abstract

Introduction: The discovery of novel drugs that can block the transmission of pain signals for treating the pain of various etiologies is an urgent topic in pharmaceutics. The aim of this paper is to synthesize and to investigate in vitro and in silico characteristics of a promising novel compound: 7-(2-chlorophenyl)-4-(4-methylthiazol-5-yl)-4,6,7,8-tetrahydroquinoline-2,5(1H,3H)-dione (HSV-DKH-0450). Materials and methods: The specific activity and the inhibitory mechanism of HSV-DKH-0450 were studied using the HEK293 culture cells expressing the IPTG-induced TRPA1 ion channels. Cardiotoxicity was determined by estimating the binding of HSV-DKH-0450 to the hERG channel. Inhibition of human liver cytochromes was determined by the effect on the activity of cytochromes 1A2, 2C9, 2D6, 2C8, and 3A4. Cellular toxicity was assessed by the effect on the viability of human hepatocytes. ADMET properties were evaluated using admetSAR and SwissADME web-based tools. Molecular docking was carried out using AutoDock Vina tools to predict the binding affinity of all HSV-DKH-0450 stereoisomers toward the TRPA1 and TRPV1 receptors. Results and discussion: In silico predictions of ADMET properties of HSV-DKH-0450 showed that it has optimal pharmaceutical profiles. A series of in vitro pharmacological studies revealed that HSV-DKH-0450 is a promising antagonist of the TRPA1 ion channel with the IC50 of 91.3 nM. The molecular docking of HSV-DKH-0450 stereoisomers against the TRPA1 and TRPV1 receptors demonstrates that they all are characterized by an approximately similar high binding affinity. Conclusion: The obtained data for substance HSV-DKH-0450 look promising for its further development as a potential therapeutic agent for pain relief.

Publisher

Belgorod National Research University

Subject

Pharmacology (medical),Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3