CONTAIN: Optimising the long-term management of invasive alien species using adaptive management

Author:

Lambin Xavier,Burslem David,Caplat Paul,Cornulier Thomas,Damasceno GabriellaORCID,Fasola Laura,Fidelis Alessandra,García-Díaz PabloORCID,Langdon BárbaraORCID,Linardaki Eirini,Montti Lia,Moyano JaimeORCID,Nuñez Martín A.,Palmer Stephen C.F.,Pauchard Aníbal,Phimister Euan,Pizarro José CristóbalORCID,Powell PriscilaORCID,Raffo EduardoORCID,Rodriguez-Jorquera Ignacio A.,Roesler Ignacio,Tomasevic Jorge A.ORCID,Travis Justin M.J.,Verdugo Claudio

Abstract

Invasive Alien Species (IAS) threaten biodiversity, ecosystem functions and services, modify landscapes and impose costs to national economies. Management efforts are underway globally to reduce these impacts, but little attention has been paid to optimising the use of the scarce available resources when IAS are impossible to eradicate, and therefore population reduction and containment of their advance are the only feasible solutions.CONTAIN, a three-year multinational project involving partners from Argentina, Brazil, Chile and the UK, started in 2019. It develops and tests, via case study examples, a decision-making toolbox for managing different problematic IAS over large spatial extents. Given that vast areas are invaded, spatial prioritisation of management is necessary, often based on sparse data. In turn, these characteristics imply the need to make the best decisions possible under likely heavy uncertainty.Our decision-support toolbox will integrate the following components:(i) the relevant environmental, social, cultural, and economic impacts, including their spatial distribution;(ii) the spatio-temporal dynamics of the target IAS (focusing on dispersal and population recovery);(iii) the relationship between the abundance of the IAS and its impacts;(iv) economic methods to estimate both benefits and costs to inform the spatial prioritisation of cost-effective interventions.To ensure that our approach is relevant for different contexts in Latin America, we are working with model species having contrasting modes of dispersal, which have large environmental and/or economic impacts, and for which data already exist (invasive pines, privet, wasps, and American mink). We will also model plausible scenarios for data-poor pine and grass species, which impact local people in Argentina, Brazil and Chile.We seek the most effective strategic management actions supported by empirical data on the species’ population dynamics and dispersal that underpin reinvasion, and on intervention costs in a spatial context. Our toolbox serves to identify key uncertainties driving the systems, and especially to highlight gaps where new data would most effectively reduce uncertainty on the best course of action. The problems we are tackling are complex, and we are embedding them in a process of co-operative adaptive management, so that both researchers and managers continually improve their effectiveness by confronting different models to data. Our project is also building research capacity in Latin America by sharing knowledge/information between countries and disciplines (i.e., biological, social and economic), by training early-career researchers through research visits, through our continuous collaboration with other researchers and by training and engaging stakeholders via workshops. Finally, all these activities will establish an international network of researchers, managers and decision-makers. We expect that our lessons learned will be of use in other regions of the world where complex and inherently context-specific realities shape how societies deal with IAS.

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3