Developing Standards for Improved Data Quality and for Selecting Fit for Use Biodiversity Data

Author:

Chapman ArthurORCID,Belbin LeeORCID,Zermoglio PaulaORCID,Wieczorek JohnORCID,Morris Paul,Nicholls Miles,Rees Emily Rose,Veiga Allan,Thompson Alexander,Saraiva AntonioORCID,James ShelleyORCID,Gendreau ChristianORCID,Benson AbigailORCID,Schigel DmitryORCID

Abstract

The quality of biodiversity data publicly accessible via aggregators such as GBIF (Global Biodiversity Information Facility), the ALA (Atlas of Living Australia), iDigBio (Integrated Digitized Biocollections), and OBIS (Ocean Biogeographic Information System) is often questioned, especially by the research community. The Data Quality Interest Group, established by Biodiversity Information Standards (TDWG) and GBIF, has been engaged in four main activities: developing a framework for the assessment and management of data quality using a fitness for use approach; defining a core set of standardised tests and associated assertions based on Darwin Core terms; gathering and classifying user stories to form contextual-themed use cases, such as species distribution modelling, agrobiodiversity, and invasive species; and developing a standardised format for building and managing controlled vocabularies of values. Using the developed framework, data quality profiles have been built from use cases to represent user needs. Quality assertions can then be used to filter data suitable for a purpose. The assertions can also be used to provide feedback to data providers and custodians to assist in improving data quality at the source. A case study, using two different implementations of tests and assertions based around the Darwin Core "Event Date" terms, were also tested against GBIF data, to demonstrate that the tests are implementation agnostic, can be run on large aggregated datasets, and can make biodiversity data more fit for typical research uses.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

National Science Foundation

Publisher

Pensoft Publishers

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3