Promoting High-Quality Data in OBIS: Insights from the OBIS Data Quality Assessment and Enhancement Project Team

Author:

Gan Yi-MingORCID,Perez Perez RubenORCID,Provoost Pieter,Benson AbigailORCID,Peralta Brichtova Ana CarolinaORCID,Lawrence ElizabethORCID,Nicholls JohnORCID,Konjarla JohnnyORCID,Sarafidou Georgia,Saeedi HaniehORCID,Lear DanORCID,Penzlin AnkeORCID,Wambiji Nina,Appeltans WardORCID

Abstract

The Ocean Biodiversity Information System (OBIS) (Klein et al. 2019) is a global database of marine biodiversity and associated environmental data, which provides critical information to researchers and policymakers worldwide. Ensuring the accuracy and consistency of the data in OBIS is essential for its usefulness and value, not only to the scientific community but also to the science-policy interface. The OBIS Data Quality Assessment and Enhancement Project Team (QCPT), formed in 2019 by the OBIS steering group, aims to assess and enhance data quality. It has been working on three categories of activities for this purpose: Data quality enhancement and management The OBIS QCPT organized data laundry events to identify and address data quality issues of published OBIS datasets. Furthermore, individual OBIS nodes were invited to give their data-processing presentations in the monthly meetings to foster knowledge sharing and collaborative problem-solving focused on data quality. Data quality issues and solutions highlighted in the presentations and data laundry events were documented in a dedicated GitHub repository as GitHub issues. The solutions for data quality issues and marine-specific pre-publication quality control tools, designed to identify the data quality issues, were provided as feedback to the OBIS Capacity Development Task Team. These inputs were used to create training resources (see OBIS manual, upcoming OBIS training course hosted on OceanTeacher Global Academy) aimed at preventing these issues. Standardization of OBIS data processing pipeline As OBIS uses the Darwin Core standard (Wieczorek et al. 2012), the use of standardized tests and assertions in the data processing pipeline is encouraged. To achieve this, the OBIS QCPT aligned OBIS quality checks with a subset of core tests and assertions (Chapman et al. 2020) developed by the Biodiversity Information Standards (TDWG) Biodiversity Data Quality (BDQ) Task Group 2 (TG2) (Chapman et al. 2020) as tracked in this GitHub issue. Not all default parameters of the core tests and assertions are optimal for marine biodiversity data. The OBIS QCPT met monthly to determine suitable parameters for customizing the tests. The pipeline produces a data quality report for each dataset with quality flags that indicate potential data quality issues, enabling node managers and data providers to review the flagged records. Community engagement The OBIS QCPT led a survey among data users to gather insights into OBIS data quality issues and bridge the gap between the current implementation and user expectations. The survey findings enabled OBIS to prioritize issues to be addressed, as summarized in Section 2.2.2 of the 11th OBIS Steering Group meeting report. In addition to engaging with data users, the OBIS QCPT also served as a platform to discuss questions related to the use of Darwin Core from the nodes and provided feedback for the term discussions. In summary, the OBIS QCPT improves marine species data reliability and usability through transparent and participatory approaches, fostering continuous improvement. Collaborative efforts, standardized procedures, and knowledge sharing advance OBIS' mission of providing high quality biodiversity data for research, conservation, and ocean management.

Publisher

Pensoft Publishers

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3