Evaluating the performance of DNA metabarcoding for assessment of zooplankton communities in Western Lake Superior using multiple markers

Author:

Meredith ChristyORCID,Hoffman Joel,Trebitz Anett,Pilgrim Erik,Okum Sarah,Martinson John,Cameron Ellen S.ORCID

Abstract

For DNA metabarcoding to attain its potential as a community assessment tool, we need to better understand its performance versus traditional morphological identification and work to address any remaining performance gaps in incorporating DNA metabarcoding into community assessments. Using fragments of the 18S nuclear and 16S mitochondrial rRNA genes and two fragments of the mitochondrial COI marker, we examined the use of DNA metabarcoding and traditional morphological identification for understanding the diversity and composition of crustacean zooplankton at 42 sites across western Lake Superior. We identified 51 zooplankton taxa (genus or species, depending on the finest resolution of the taxon across all identification methods), of which 17 were identified using only morphological traits, 13 using only DNA and 21 using both methods. The taxa found using only DNA metabarcoding included four species and one genus-level identification not previously known to occur in Lake Superior, the presence of which still needs to be confirmed. A substantial portion of taxa that were identified to genus or species by morphological identification, but not identified using DNA metabarcoding, had zero (“no record”) or < 2 (“underrepresented records”) reference barcodes in the BOLD or NCBI databases (63% for COI, 80% for 16S, 74% for 18S). The two COI marker fragments identified the most genus- and species-level taxa, whereas 18S was the only marker whose family-level percent sequence abundance patterns showed high correlation to composition patterns from morphological identification, based on a NMDS analysis of Bray-Curtis similarities. Multiple replicates were collected at a subset of sites and an occupancy analysis was performed, which indicated that rare taxa were more likely to be detected using DNA metabarcoding than traditional morphology. Our results support that DNA metabarcoding can augment morphological identification for estimating zooplankton diversity and composition of zooplankton over space and time, but may require use of multiple markers. Further addition of taxa to reference DNA databases will improve our ability to use DNA metabarcoding to identify zooplankton and other invertebrates in aquatic surveys.

Funder

U.S. Environmental Protection Agency

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3