The first complete mitochondrial genome sequence of Cynopterus brachyotis (Chiroptera, Pteropodidae) from the Philippines

Author:

Gaite Paul LorenzoORCID,Aala, Jr. WilsonORCID,Bacus Michael,Labrador Christian,Numeron April Mae,Gamalo Lief Erikson,Murao Lyre Anni

Abstract

The technical limitations of capillary sequencing in providing insights on phylogeny have been greatly aided in recent years by the implementation of next generation sequencing platforms which can generate whole mitochondrial genome (mitogenome) sequences. In this study, enriched mitochondrial DNA ofCynopterus brachyotisfrom Mindanao, Philippines was sequenced using the Illumina MiSeq platform. A total of 653,967 clean paired-end reads was assembled using a MIRA-MITObim pipeline, resulting in a consensus mitogenome sequence length of 17,382 bases and a GC content of 41.48%, which is consistent with other published mitogenomes in fruit bats. The assembledC. brachyotismitogenome was annotated using the MITOS online server and was able to resolve all mitochondrial genes, except for one transfer RNA gene (trnT) which may be further resolved by additional capillary sequencing of the region. Sequence analysis showed that the PhilippineC. brachyotisis only 90%-91% homologous with otherCynopterusspp., based on its full mitogenome sequence. Phylogenetic analysis of fruit bat mitogenomes, deposited in online repositories, revealed that the PhilippineC. brachyotisin this study has diverged from AsianCynopterus, namelyCynopterus brachyotisandCynopterus sphinxfrom other parts of Asia (100% bootstrap support) with the latter two forming a separate clade. This divergence at the species level was consistent with phylogentic inference using cytochrome oxidase 1 (CO1) and cytochrome B (cytb) gene markers. Our results strengthen the previously reported hypothesis that the Cynopterus cf. brachyotis in the Philippines is distinct from its Asian counterparts and should be, therefore, treated as a new species.

Publisher

Pensoft Publishers

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3