Multi-context Knowledge Base using Calculated Descriptors from Xper3: the Archaeocyaths Knowledge Base example

Author:

Kerner AdelineORCID,Vignes Lebbe Régine

Abstract

Natural sciences need to make assertions about characteristics of taxa. Traits and qualities or descriptors and states become increasingly crucial as a resource for identification adapted to both scientists and the public. Specialists, non-specialists, and the general public need different strategies for accessing the information. Creating a knowledge base is time-consuming and adapting this base to several needs seems to increase the required time substantially. Specialists think that an identification tool requires a complete overhaul when they want to change the target audience or the language... so they do not wish to get involved. How to minimize creation and update time? How to aggregate data only once in order to create a single knowledge base with different access levels? Strategies for integrating different patterns of descriptors in a single knowledge base are useful to modulate descriptions without loss of information and with the certainty that everything is up to date in each context. This multi-context knowledge base, derived from a single trait dataset, can generate descriptions adapted to different contexts and users. To address this issue, we propose to use calculated descriptors in order to have on the same knowledge base, different versions of descriptors that are updated automatically when the reference trait is modified. Calculated descriptors are a distinctive feature of Xper3. These descriptors are automatically computed from other descriptors by using logical operators (boolean operators). Xper3 (http://www.xper3.com) is a web platform that manages descriptive data and provides interactive identification keys. Xper3 and its previous version, Xper2, have been used already for various taxonomic groups. We will focus on fossils in order to reveal how calculated descriptors in Xper3 knowledge bases can solve the multi-context problem. The main source of content is the archaeocyaths knowledge base (http://archaeocyatha.infosyslab.fr). Archaeocyaths are the first animals to build reefs during the Cambrian. They are calcified sponges without spicules. The archaeocyaths knowledge base is an efficient resource for scientific studies and a useful tool for non-specialists, especially with the support of calculated descriptors. Correspondence between archaeocyath and sponge morphologies is not ready yet, but everything will be included into PORO (The Porifera Ontology, http://purl.obolibrary.org/obo/poro/releases/2014-03-06/) in the short term (an anatomy ontology about sponges). In this knowledge base, calculated descriptors are used to: create a consistent multilingual interactive identification key (French and English are available and Russian is in draft), generate descriptors adapted to different level of expertise and reword morphological descriptors (adapted for identification) into homologous characters (adapted for phylogeny). create a consistent multilingual interactive identification key (French and English are available and Russian is in draft), generate descriptors adapted to different level of expertise and reword morphological descriptors (adapted for identification) into homologous characters (adapted for phylogeny). Xper2 and Xper3 are compatible with TDWG’s Structured Descriptive Data (SDD) format. Calculated descriptors do not exist in SDD format and so they are exported from Xper3 as categorical descriptors, therefore losing the origin of values. Calculated descriptors are powerful and we are interested in discussing these with SDD and Xper3 users in order to improve the user interface and develop new tools for the analysis of such descriptors.

Publisher

Pensoft Publishers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NEARSIDE: Structured kNowledge Extraction frAmework from SpecIes DEscriptions;Biodiversity Information Science and Standards;2022-09-07

2. The 8 Years of Existence of Xper3: State of the art and future developments of the platform;Biodiversity Information Science and Standards;2021-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3