The 8 Years of Existence of Xper3: State of the art and future developments of the platform

Author:

Kerner AdelineORCID,Bouquin Sylvain,Portier Rémy,Vignes Lebbe Régine

Abstract

The Xper3 platform was launched in November 2013 (Saucède et al. 2020). Xper3 is a free web platform that manages descriptive data and provides interactive identification keys. It is a follow-up to Xper (Forget et al. 1986) and Xper2 (Ung et al. 2010). Xper3 is used via web browsers. It offers a collaborative, multi-user interface without local installation. It is compatible with TDWG’s Structured Descriptive Data (SDD) format. Xper3 and its previous version, Xper2, have already been used for various taxonomic groups. In June 2021, 4743 users had created accounts and edited 5756 knowledge bases. Each knowledge base is autonomous and can be published as a free access key link, as a data paper in publications or on websites. The risk of this autonomy and lack of visibility to already existing knowlege bases is possible duplicated content or overlapping effort. Increasingly, users have asked for a public overview of the existing content. A first version of a searching tool is now available online. Explorer lists the databases whose creators have filled in the extended metadata and have accepted the referencing. The user can search by language, taxonomic group, fossil or current, geography, habitat, and key words. New developments of Xper3 are in progress. Some have a first version online, others are in production and the last ones are future projects. We will present an overview of the different projects in progress and for the future. Calculated descriptors are a distinctive feature of Xper3 (Kerner and Vignes Lebbe 2019). These descriptors are automatically computed from other descriptors by using logical operators (Boolean operators). The use of calculated descriptors remains rare. It is necessary to put forward the calculated descriptors to encourage more feedback in order to improve them. The link between Xper3 and Annotate continues to improve (Hays and Kerner 2020). Annotate offers the possibility of tagging images with controlled vocabularies structured in Xper3. Then, an export from Annotate to Xper3, allows automatic filling in of the Xper3 knowledge base with the descriptions (annotations and numerical measures) of virtual specimens, and then comparing specimens to construct species descriptions, etc. Future developments are in progress that will modify the Xper3 architecture in order to have the same functionalities in both local and online versions and to allow various user interfaces from the same knowledge bases. Xper2-specific features, such as merging states, adding notes, adding definitions and/or illustrations in the description tab, having different ways of sorting and filtering the descriptors during an identification (by groups, identification power, alphabetic order, specialist’s choice) have to be added to Xper3. A new tab in Xper3’s interface is being implemented to give an access to various analysis tools, via API (Application Programming Interface), or R programming code: MINSET: minimum list of descriptors sufficient to discriminate all items MINDESCR: minimum set of descriptors to discriminate an item DESCRXP: generating a description in natural language MERGEMOD: proposing to merge states without loss of discriminating power DISTINXP, DISTVAXP: computing similarities between items or descriptors MINSET: minimum list of descriptors sufficient to discriminate all items MINDESCR: minimum set of descriptors to discriminate an item DESCRXP: generating a description in natural language MERGEMOD: proposing to merge states without loss of discriminating power DISTINXP, DISTVAXP: computing similarities between items or descriptors One last project that we would like to implement is an interoperability between Xper3, platforms with biodiversity data (e.g., Global Biodiversity Information Facility, GBIF) and bio-ontologies. An ID field already exists to add Universally Unique IDentifiers (UUID) for taxa. ID fields have to be added for descriptors and states to link them with ontologies e.g., Phenotypic Quality Ontology PATO, Plant Ontology PO. We are interested in discussing future developments to further improve the user interface and develop new tools for the analysis of knowledge bases.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3