Abstract
Within the framework of “Proryv” project a radiation-equivalent approach to radioactive waste management is being envisioned with U and Pu recycling and MA transmutation. Successful industry-wide implementation of the design approaches should be planned in order to avoid considerable financial and radiological encumbrances caused by the NFC final stage for two-component nuclear power system (NPS) under formation on the basis of thermal and fast reactors. In order to ensure a successful industry-wide implementation of the approaches being developed, the back-end of the NFC should not constitute considerable a financial and radiological burden for the emerging two-component nuclear power system (NPS).
This article addresses the problems concerning justification of radiological and technical-and-economic feasibility of MA partitioning and subsequent transmutation in FNR. The extent of MA accumulation as a result of TNR SNF reprocessing confirms the need for the introduction of MA partitioning technologies not only at all reprocessing plants planned for commissioning, but also at the plants now in operation. Based on available data, the study has shown that the implementation of the closed NFC with FNR contributes to significant reduction in the cost of disposal of radwaste compared to the scenario based exclusively on the development of VVER and open fuel cycle technologies. Recycling plutonium in fast reactors should be implemented in conjunction with MA to address environmental, non-proliferation and economic concerns of the back-end of advanced NFC. Within the scale of the future nuclear power system in Russia, an option such as this can only be realized on the basis of developing a FNR fleet.