Correlation between potential radiation-induced carcinogenic risks associated with WWER-1000 spent nuclear fuel and BREST-1200 radiation waste in case of annual generation of 1 GW of electricity. Part 1. Radiological equivalence

Author:

Ivanov V.K., ,Lopatkin A.V.,Adamov E.O.,Menyajlo A.N.,Chekin S.Yu.,Kashcheeva P.V.,Korelo A.M.,Tumanov K.A., , , , , , , ,

Abstract

The paper presents for the first-time comparison of radiation safety for the population between spent nuclear fuel (SNF) irradiated in water-water power reactor with thermal neutrons (WWER-1000) and radioactive wastes (RW) from lead cooled fast neutrons reactor (BREST-1200). The re-actors generate equal amount of electric power 1 GW per year. Composition and radiation param-eters of long-lived radiation wastes sent to disposal is reviewed. Potential biological hazards from SNF and RW for about 10,000-years disposal were estimated as effective doses (Sv). To assess potential radiation-induced carcinogenic risk as estimates of lifetime attributable risk (LAR) new ICRP methodology was used. New ICRP methodology was used as the basis for the computer code for the program “Radiological protection of the population” (ROZA-N) developed by the Proryv Project of the Rosatom State Corporation. The project was registered at the Unified Register of Russian Software in 2021 (registration number 2442). It was found that potential radiation-induced carcinogenic risk for the population associated with WWER-1000 reactor SNF was 132 times high-er than the risk associated with BREST-1200 reactor RW. Radiological equivalence of carcinogenic risks associated with SNF WWER-1000 and natural uranium material was proven to be achieved in about 15,600 years (significantly more than 10,000 years), the radiological equivalence of risks associated with RW BREST-1200, on the other hand, to be achieved only in 120 years.

Publisher

National Medical Research Radiological Centre

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,Nuclear and High Energy Physics,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3