Physicochemical fundamentals of phase formation in silicon layers implanted with oxygen and carbon

Author:

Aleshin Andrey N.,Enisherlova Kira L.

Abstract

The thermodynamic and kinetic regularities of processes occurring during heat treatment in silicon layers implanted with oxygen and carbon ions have been considered. We have analyzed the regularities of silicon deformation, impurity distribution and defect formation after different annealing modes. Diffusion smearing of implanted impurities in these layers has not been observed during carbon and oxygen implantation. As-annealed carbon does not occupy sites of the silicon lattice, in contrast to the implantation behavior of other impurities, e.g. boron and phosphorus. Phase formation regularities in implanted layers during subsequent heat treatment have been analyzed. Changes in the free energy of the system during heterogeneous and homogeneous precipitate nucleation have been compared. Sequential implantation with carbon and oxygen ions has been found to initiate diffusion flows of carbon and oxygen toward the center of the ion doped layer (the uphill diffusion phenomenon). The possibility of uphill diffusion has been analyzed from the standpoints of the Onsager theory. We show that the contribution of the chemical interaction between oxygen and carbon is far greater than the entropy contribution to the diffusion flux. We have demonstrated the high efficiency of ion doping with oxygen and carbon for gettering of uncontrolled impurities from active regions of silicon structures. The efficiency of this gettering process has been assessed for epitaxial structures in which layers had been grown on silicon wafers implanted with these impurities. Uphill diffusion in the layers after double doping with carbon and oxygen has led to the formation of more defects which may provide for efficient gettering. We have found the optimal oxygen and carbon implantation dose ratio for maximal gettering efficiency.

Publisher

Pensoft Publishers

Subject

Automotive Engineering

Reference24 articles.

1. Formation mechanisms for carbon onions and nanocapsules in C+-ion implanted copper

2. Nucleation of carbon onions and nanocapsules under ion implantation at high temperature

3. Nucleation and growth of carbon onions synthesized by ion-implantation: a transmission electron microscopy study

4. Proximity getterihg by MeV-implantation of carbon: microstructure and carrier lifetime measurements

5. Pilipenko V.A., Gorushko V.A., Petlitskiy A.N., Ponaryadov V.V., Turtsevich A.S., Shvedov S.V. Methods and mechanisms of gettering of silicon structures in the production of integrated circuits. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2013; (2–3): 43–57. (In Russ.)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3