Hydrodynamics and heat exchange of crystal pulling from melts. Part I: Experimental studies of free convection mode

Author:

Berdnikov Vladimir S.

Abstract

This work is a brief overview of experimental study results for hydrodynamics and convective heat exchange in thermal gravity capillary convection modes for the classic Czochralski technique setup obtained at the Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences. The experiments have been carried out at test benches which simulated the physics of the Czochralski technique for 80 and 295 mm diameter crucibles. Melt simulating fluids with Prandtl numbers Pr = 0.05, 16, 45.6 and 2700 have been used. Experiments with transparent fluids have been used for comparing the evolution of flow structure from laminar mode to well-developed turbulent mode. Advanced visualization and measurement methods have been used. The regularities of local and integral convective heat exchange in the crucible/melt/crystal system have been studied. The experiments have shown that there are threshold Grashof and Marangoni numbers at which the structure of the thermal gravity capillary flow undergoes qualitative changes and hence the regularities of heat exchange in the melt change. The effect of melt hydrodynamics on the crystallization front shape has been studied for Pr = 45.6. Crystallization front shapes have been determined for the 1 × 105 to 1.9 × 105 range of Grashof numbers. We show that the crystallization front shape depends largely on the spatial flow pattern and the temperature distribution in the melt.

Publisher

Pensoft Publishers

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3