A neomorphic ossification connecting the braincase, squamosal, and quadrate in choristoderan reptiles: insights from µCT data

Author:

Qin Wanying,Yi Hongyu,Gao Keqin

Abstract

Choristoderes are extinct semi-aquatic to aquatic diapsid reptiles, occupying a similar niche as modern crocodilians from the Jurassic to the Miocene. Distinct from other diapsids, choristoderes have a neomorphic ossification between the braincase, squamosal, and quadrate. This neomorphic bone is described as thin and plate-like in long-snouted choristoderes (Neochoristodera), yet little is known about its presence and morphology in short-snouted non-neochoristoderes that are sister groups to Neochoristodera. Using X-ray micro-CT scanning, this study describes in detail the neomorph of two non-neochoristoderes, Coeruleodraco jurassicus and Philydrosaurus proseilus. The neomorph of both species is found between the parietal, quadrate, and squamosal. The shape of the neomorph resembles a pyramid in three-dimensions, with a triangular dorsal surface and a prominent ventral process. This confirms the neomorph is shared among early and late branching choristoderes; therefore, presence of the neomorph is a potential synapomorphy of Choristodera. In addition, the pterygoquadrate foramen is identified in non-neochoristoderes for the first time, located between the neomorph and quadrate in C. jurassicus. In the holotype of P. proseilus, the neomorph and quadrate were dislocated, but a possible pterygoquadrate foramen is identified between the two bones. Although the neomorph and pterygoquadrate foramen have been suggested to be homologous with the stapes and stapedial foramen in Champsosaurus, more evidences are required to confirm this homology in non-neochoristoderes, because 1) the neomorph is long and plate-like in neochoristoderes, but pyramid-shaped in non-neochoristoderes; 2) in Champsosaurus, the neomorph is situated lateral to the prootic and opisthotic; in C. jurassicus and P. proseilus, articulation between the neomorph and prootic (or opisthotic) cannot be confirmed due to damage to the braincase during preservation. To understand the origin of the neomorph, more intact specimens are needed to assess contact relationships between the neomorph and otic region in non-neochoristoderes.

Publisher

Pensoft Publishers

Reference38 articles.

1. New material of Ikechosaurus sunailinae (Reptilia: Choristodira) from the Early Cretaceous Laohongdong Formation, Ordos Basin, Inner Mongolia, and the interrelationships of the genus

2. The osteology of Champsosaurus Cope.;Brown;American Museum of Natural History, Memoirs,1905

3. Plesiosaur ancestors from the upper permian of Madagascar

4. On some extinct reptiles and Batrachia from the Judith River and Fox Hills beds of Montana.;Cope;Proceedings of the Academy Natural Sciences of Philadelphia,1876

5. A new choristodere (Reptilia: Choristodera) from an Aptian–Albian coal deposit in China

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution and development of the cetacean skull roof: a case study in novelty and homology;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3