2ʹ,3,3,5ʹ-Tetramethyl-4ʹ-nitro-2ʹH-1,3ʹ-bipyrazole exerts antinociceptive effect using various nociception models

Author:

Bseiso Yousra,Alqudah Abdelrahim,Qnais Esam,Wedyan Mohammed,Abu-Safieh KayedORCID,Gammoh OmarORCID

Abstract

Background: 2ʹ,3,3,5ʹ-Tetramethyl-4ʹ-nitro-2ʹH-1,3ʹ-bipyrazole (TMNB) is a novel bipyrazole compound that exhibited antidiabetic and anti-inflammatory properties. However, its analgesic effect has not been investigated. This study aimed to assess the antinociceptive activity of TMNB using different nociception mouse models. Methods: TMNB doses (50, 100, 150, and 200 µg/kg) were assessed in mice using the acetic acid-induced writhing test, hot plate test, and formalin-induced paw licking assay. The effects were compared to those of mice treated with acetylsalicylic acid or morphine in the presence or absence of naloxone. Capsaicin- and glutamate-induced paw-licking tests were also used to evaluate the involvement of the vanilloid and glutamatergic systems, respectively. Results: TMNB produced significant dose-dependent inhibition of nociceptive behavior in the acetic acid-induced writhing test, showing 66% inhibition at a dose of 200 µg/kg. TMNB also caused a significant increase in the latency period in response to the hot plate test (68.2% at 200 µg/kg), and significantly inhibited both the neurogenic and inflammatory phases in the formalin-induced paw-licking test. Naloxone significantly reverses the effect of TMNB in both the hot plate test and formalin-induced paw-licking test. Moreover, TMNB significantly inhibited the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin (53% and 77.1%, respectively at a dose of 200 µg/kg). Conclusion: TMNB possesses antinociceptive activity in mice that is mediated through both central and peripheral pathways.

Funder

Hashemite University

Publisher

Pensoft Publishers

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3