New Treatment for Type 2 Diabetes Mellitus Using a Novel Bipyrazole Compound

Author:

Alqudah AbdelrahimORCID,Qnais Esam Y.ORCID,Wedyan Mohammed A.,Altaber Sara,Abudalo Rawan,Gammoh Omar,Alkhateeb HakamORCID,Bataineh SajedaORCID,Athamneh Rabaa Y.,Oqal Muna,Abu-Safieh KayedORCID,McClements LanaORCID

Abstract

2′,3,3,5′-Tetramethyl-4′-nitro-2′H-1,3′-bipyrazole (TMNB) is a novel bipyrazole compound with unknown therapeutic potential in diabetes mellitus. This study aims to investigate the anti-diabetic effects of TMNB in a high-fat diet and streptozotocin-(HFD/STZ)-induced rat model of type 2 diabetes mellitus (T2D). Rats were fed HFD, followed by a single low dose of STZ (40 mg/kg). HFD/STZ diabetic rats were treated orally with TMNB (10 mg/kg) or (200 mg/kg) metformin for 10 days before terminating the experiment and collecting plasma, soleus muscle, adipose tissue, and liver for further downstream analysis. TMNB reduced the elevated levels of serum glucose in diabetic rats compared to the vehicle control group (p < 0.001). TMNB abrogated the increase in serum insulin in the treated diabetic group compared to the vehicle control rats (p < 0.001). The homeostasis model assessment of insulin resistance (HOMA-IR) was decreased in the diabetic rats treated with TMNB compared to the vehicle controls. The skeletal muscle and adipose tissue protein contents of GLUT4 and AMPK were upregulated following treatment with TMNB (p < 0.001, < 0.01, respectively). TMNB was able to upregulate GLUT2 and AMPK protein expression in liver (p < 0.001, < 0.001, respectively). LDL, triglyceride, and cholesterol were reduced in diabetic rats treated with TMNB compared to the vehicle controls (p < 0.001, 0.01, respectively). TMNB reduced MDA and IL-6 levels (p < 0.001), and increased GSH level (p < 0.05) in diabetic rats compared to the vehicle controls. Conclusion: TMNB ameliorates insulin resistance, oxidative stress, and inflammation in a T2D model. TMNB could represent a promising therapeutic agent to treat T2D.

Funder

Deanship of Scientific Research at The Hashemite University

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3