Rapid Least Concern: towards automating Red List assessments

Author:

Bachman StevenORCID,Walker BarnabyORCID,Barrios SaraORCID,Copeland AlisonORCID,Moat Justin

Abstract

The IUCN Red List of Threatened SpeciesTM (hereafter the Red List) is an important global resource for conservation that supports conservation planning, safeguarding critical habitat and monitoring biodiversity change (Rodrigues et al. 2006). However, a major shortcoming of the Red List is that most of the world's described species have not yet been assessed and published on the Red List (Bachman et al. 2019Eisenhauer et al. 2019). Conservation efforts can be better supported if the Red List is expanded to achieve greater coverage of mega-diverse groups of organisms such as plants, fungi and invertebrates. There is, therefore, an urgent need to speed up the Red List assessment and documentation workflow. One reason for this lack of species coverage is that a manual and relatively time-consuming procedure is usually employed to assess and document species. A recent update of Red List documentation standards (IUCN 2013) reduced the data requirements for publishing non-threatened or 'Least Concern' species on the Red List. The majority of the required fields for Least Concern plant species can be found in existing open-access data sources or can be easily calculated. There is an opportunity to consolidate these data and analyses into a simple application to fast-track the publication of Least Concern assessments for plants. There could be as many as 250,000 species of plants (60%) likely to be categorised as Least Concern (Bachman et al. 2019), for which automatically generated assessments could considerably reduce the outlay of time and valuable resources for Red Listing, allowing attention and resources to be dedicated to the assessment of those species most likely to be threatened. We present a web application, Rapid Least Concern, that addresses the challenge of accelerating the generation and documentation of Least Concern Red List assessments. Rapid Least Concern utilises open-source datasets, such as the Global Biodiversity Information Facility (GBIF) and Plants of the World Online (POWO) through a simple web interface. Initially, the application is intended for use on plants, but it could be extended to other groups, depending on the availability of equivalent datasets for these groups. Rapid Least Concern users can assess a single species or upload a list of species that are assessed in a batch operation. The batch operation can either utilise georeferenced occurrence data from GBIF or occurrence data provided by the user. The output includes a series of CSV files and a point map file that meet the minimum data requirements for a Least Concern Red List assessment (IUCN 2013). The CSV files are compliant with the IUCN Red List SIS Connect system that transfers the data files to the IUCN database and, pending quality control checks and review, publication on the Red List. We outline the knowledge gap this application aims to fill and describe how the application works. We demonstrate a use-case for Rapid Least Concern as part of an ongoing initiative to complete a global Red List assessment of all native species for the United Kingdom Overseas Territory of Bermuda.

Publisher

Pensoft Publishers

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference42 articles.

1. shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds;Attali,2018

2. magrittr: A Forward-Pipe Operator for R;Bache,2014

3. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool

4. Progress, challenges and opportunities for Red Listing

5. rgdal: Bindings for the 'Geospatial' Data Abstraction Library;Bivand,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3