Cellular susceptibility and oxidative stress response to menadione of logarithmic, quiescent, and nonquiescent Saccharomyces cerevisiae cell populations

Author:

Marinovska Polya Galinova,Todorova Teodora IvanovaORCID,Boyadzhiev Krassimir Plamenov,Pisareva Emiliya Ivanova,Tomova Anna Atanasova,Parvanova Petya Nikolaeva,Dimitrova Maria,Chankova Stephka Georgieva,Petrova Ventsislava Yankova

Abstract

The aim of the present study was to compare cellular susceptibility and oxidative stress response of S. cerevisiae logarithmic (log), quiescent (Q), and non-quiescent (NQ) cell populations to menadione – a well-known inducer of oxidative stress. Three main approaches were used: microbiological – cell survival, molecular – constant field gel electrophoresis for detection of DNA double-strand breaks (DSB), and biochemical – measurement of reactive oxygen species (ROS) levels, oxidized proteins, lipid peroxidation, glutathione, superoxide dismutase (SOD) and catalase on S. cerevisiae haploid strain BY4741. The doses causing 20% (LD20) and 50% (LD50) lethality were calculated. The effect of menadione as a well-known oxidative stress inducer is compared in the log, Q, and NQ cells. Survival data reveal that Q cells are the most susceptible to menadione with LD50 corresponding to 9 µM menadione. On the other hand, dose-dependent DSB induction is found only in Q cells confirming the results shown above. No effect on DSBs levels is observed in log and NQ cells. Further, the oxidative stress response of the cell populations is clarified. Results show significantly higher levels of SOD and ROS in Q cells than in log cells after the treatment with 100 µM menadione. On the other side, higher induction of oxidized proteins, malondialdehyde, and glutathione is observed after menadione treatment of log cells. Our study provides evidence that Saccharomyces cerevisiae quiescent cells are the most susceptible to the menadione action. It might be suggested that the DNA damaging and genotoxic action of menadione in Saccharomyces cerevisiae quiescent cells could be related to ROS production.

Publisher

Pensoft Publishers

Subject

Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3