Author:
Yi Seulgi,Kim Kwon-Il,Yoon Sukmin
Abstract
Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL’s scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.
Funder
Defense Acquisition Program Administration
Agency for Defense Development
Publisher
The Korea Institute of Military Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献