Fraud detection within bankcard enrollment on mobile device based payment using machine learning
Author:
Funder
China UnionPay
Publisher
Zhejiang University Press
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing
Link
http://link.springer.com/content/pdf/10.1631/FITEE.1800580.pdf
Reference23 articles.
1. Bhattacharyya S, Jha S, Tharakunnel K, et al., 2011. Data mining for credit card fraud: a comparative study. Dec Support Syst, 50(3):602–613. https://doi.org/10.1016/j.dss.2010.08.008
2. Bolton RJ, Hand DJ, 2002. Statistical fraud detection: a review. Stat Sci, 17(3):235–255. https://doi.org/10.1214/ss/1042727940
3. Chen TQ, Guestrin C, 2016. XGBoost: a scalable tree boosting system. Proc 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.785–794. https://doi.org/10.1145/2939672.2939785
4. Cheng J, Wang PS, Li G, et al., 2018. Recent advances in efficient computation of deep convolutional neural networks. Front Inform Technol Electron Eng, 19(1):64–77. https://doi.org/10.1631/FITEE.1700789
5. China UnionPay, 2017. China Bank Card Annual Fraud Report 2017.
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Financial fraud detection through the application of machine learning techniques: a literature review;Humanities and Social Sciences Communications;2024-09-03
2. Enhancing customer retention in telecom industry with machine learning driven churn prediction;Scientific Reports;2024-06-07
3. Novel Methodology of Adaptive Machine Learning and Deep Learning System for Detecting the Fraudulent Activities in Financial Sector;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15
4. GCNXG: Detecting Fraudulent Activities in Financial Networks: A Graph Analytics and Machine Learning Fusion;Communications in Computer and Information Science;2024
5. Fraud Detection using Recurrent Neural Networks for Digital Wallet Security;2023 8th International Conference on Computer Science and Engineering (UBMK);2023-09-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3