Enhancing customer retention in telecom industry with machine learning driven churn prediction

Author:

Sikri Alisha,Jameel Roshan,Idrees Sheikh Mohammad,Kaur Harleen

Abstract

AbstractCustomer churn remains a critical concern for businesses, highlighting the significance of retaining existing customers over acquiring new ones. Effective prediction of potential churners aids in devising robust retention policies and efficient customer management strategies. This study dives into the realm of machine learning algorithms for predictive analysis in churn prediction, addressing the inherent challenge posed by diverse and imbalanced customer churn data distributions. This paper introduces a novel approach—the Ratio-based data balancing technique, which addresses data skewness as a pre-processing step, ensuring improved accuracy in predictive modelling. This study fills gaps in existing literature by highlighting the effectiveness of ensemble algorithms and the critical role of data balancing techniques in optimizing churn prediction models. While our research contributes a novel approach, there remain avenues for further exploration. This work evaluates several machine learning algorithms—Perceptron, Multi-Layer Perceptron, Naive Bayes, Logistic Regression, K-Nearest Neighbour, Decision Tree, alongside Ensemble techniques such as Gradient Boosting and Extreme Gradient Boosting (XGBoost)—on balanced datasets achieved through our proposed Ratio-based data balancing technique and the commonly used Data Resampling. Results reveal that our proposed Ratio-based data balancing technique notably outperforms traditional Over-Sampling and Under-Sampling methods in churn prediction accuracy. Additionally, using combined algorithms like Gradient Boosting and XGBoost showed better results than using single methods. Our study looked at different aspects like Accuracy, Precision, Recall, and F-Score, finding that these combined methods are better for predicting customer churn. Specifically, when we used a 75:25 ratio with the XGBoost method, we got the most promising results for our analysis which are presented in this work.

Funder

Norges Teknisk-Naturvitenskapelige Universitet

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3