Abstract
In this paper, we characterized a new class of almost contact metric manifolds and established the equivalent conditions of the characterization identity in term of Kirichenko’s tensors. We demonstrated that the Kenmotsu manifold provides the mentioned class; i.e., the new class can be decomposed into a direct sum of the Kenmotsu and other classes. We proved that the manifold of dimension 3 coincided with the Kenmotsu manifold and provided an example of the new manifold of dimension 5, which is not the Kenmotsu manifold. Moreover, we established the Cartan’s structure equations, the components of Riemannian curvature tensor and the Ricci tensor of the class under consideration. Further,the conditions required for this to be an Einstein manifold have been determined.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献