Abstract
In this paper, we determine the components of the Weyl tensor of almost contact metric (ACR-) manifold of class $C_{12}$ on associated G-structure (AG-structure) space. As an application, we prove that the conformally flat ACR-manifold of class $C_{12}$ with $n>2$ is an $\eta$-Einstein manifold and conclude that it is an Einstein manifold such that the scalar curvature $r$ has provided. Also, the case when $n=2$ is discussed explicitly. Moreover, the relationships among conformally flat, conformally symmetric, $\xi$-conformally flat and $\Phi$-invariant Ricci tensor have been widely considered here and consequently we determine the value of scalar curvature $r$ explicitly with other applications. Finally, we define new classes with identities analogously to Gray identities and discuss their connections with class $C_{12}$ of ACR-manifold.