Impacts of Land–Atmosphere Feedbacks on Deep, Moist Convection on the Canadian Prairies

Author:

Brimelow Julian C.1,Hanesiak John M.1,Burrows William R.2

Affiliation:

1. Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada

2. Cloud Physics and Severe Weather Research Section, and Hydrometeorology and Arctic Lab, Meteorological Research Division, Science and Technology Branch, Environment Canada, Edmonton, Alberta, Canada

Abstract

Abstract The purpose of this study was to focus on how anomalies in the normalized difference vegetation index (NDVI; a proxy for soil moisture) over the Canadian Prairies can condition the convective boundary layer (CBL) so as to inhibit or facilitate thunderstorm activity while also considering the role of synoptic-scale forcing. This study focused on a census agricultural region (CAR) over central Alberta for which we had observed lightning data (proxy for thunderstorms), remotely sensed NDVI data, and in situ rawinsonde data (to quantify impacts of vegetation vigor on the CBL characteristics) for 11 summers from 1999 to 2009. The authors’ data suggest that the occurrence of lightning over the study area is more likely (and is of longer duration) when storms develop in an environment in which the surface and upper-air synoptic-scale forcing are synchronized. On days when surface forcing and midtropospheric ascent are present, storms are more likely to be triggered when NDVI is much above average, compared to when NDVI is much below average. Additionally, the authors found the response of thunderstorm duration to NDVI anomalies to be asymmetric. That is, the response of lightning duration to anomalies in NDVI is marked when NDVI is below average but is not necessarily discernible when NDVI is above average. The authors propose a conceptual model, based largely on observations, that integrates all of the above findings to describe how a reduction in vegetation vigor—in response to soil moisture deficits—modulates the partitioning of available energy into sensible and latent heat fluxes at the surface, thereby modulating lifting condensation level heights, which in turn affect lightning activity.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3