The Decline in Summer Fallow in the Northern Great Plains Cooled Near‐Surface Climate but had Minimal Impacts on Precipitation

Author:

Stoy P. C.1ORCID,Bromley G. T.2,Prein A. F.3ORCID,Albeke S. E.4ORCID

Affiliation:

1. Department of Biological Systems Engineering University of Wisconsin – Madison Madison WI USA

2. Department of Meteorology University of Oklahoma Norman OK USA

3. National Center for Atmospheric Research (NCAR) Boulder CO USA

4. Wyoming Geographic Information Science Center University of Wyoming Laramie WY USA

Abstract

AbstractLand management can moderate or intensify the impacts of a warming atmosphere. Since the early 1980s, nearly 116,000 km2 of cropland that was once held in fallow during the summer is now planted in the northern North American Great Plains. To simulate the impacts of this substantial land cover change on regional climate processes, convection‐permitting model experiments using the Weather Research and Forecasting model were performed to simulate modern and historical amounts of summer fallow. The control simulation was extensively validated using multiple observational data products as well as eddy covariance tower observations. Results of these simulations show that the transition from summer fallow to modern land cover led to ∼1.5°C cooler temperatures and decreased vapor pressure deficit by ∼0.15 kPa during the growing season across the study region, which is consistent with observed cooling trends. The cooler and wetter land surface with vegetation led to a shallower planetary boundary layer and lower lifted condensation level, creating conditions more conducive to convective cloud formation and precipitation. Our model simulations however show little widespread evidence of land surface changes effects on precipitation. The observed precipitation increase in this region is more likely related to increased moisture transport by way of the Great Plains Low Level Jet as revealed by the ERA5 reanalysis. Our results demonstrate that land cover change is consistent with observed regional cooling in the northern North American Great Plains but changes in precipitation cannot be explained by land management alone.

Funder

National Science Foundation

U.S. Department of Agriculture

University of Wisconsin-Madison

Montana State University

Montana Wheat and Barley Committee

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3