Creating and Evaluating Uncertainty Estimates with Neural Networks for Environmental-Science Applications

Author:

Haynes Katherine1ORCID,Lagerquist Ryan12,McGraw Marie1,Musgrave Kate1,Ebert-Uphoff Imme13

Affiliation:

1. a Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

2. b NOAA/Earth System Research Laboratory/Global Systems Laboratory, Boulder, Colorado

3. c Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Neural networks (NN) have become an important tool for prediction tasks—both regression and classification—in environmental science. Since many environmental-science problems involve life-or-death decisions and policy making, it is crucial to provide not only predictions but also an estimate of the uncertainty in the predictions. Until recently, very few tools were available to provide uncertainty quantification (UQ) for NN predictions. However, in recent years the computer-science field has developed numerous UQ approaches, and several research groups are exploring how to apply these approaches in environmental science. We provide an accessible introduction to six of these UQ approaches, then focus on tools for the next step, namely, to answer the question: Once we obtain an uncertainty estimate (using any approach), how do we know whether it is good or bad? To answer this question, we highlight four evaluation graphics and eight evaluation scores that are well suited for evaluating and comparing uncertainty estimates (NN based or otherwise) for environmental-science applications. We demonstrate the UQ approaches and UQ-evaluation methods for two real-world problems: 1) estimating vertical profiles of atmospheric dewpoint (a regression task) and 2) predicting convection over Taiwan based on Himawari-8 satellite imagery (a classification task). We also provide Jupyter notebooks with Python code for implementing the UQ approaches and UQ-evaluation methods discussed herein. This article provides the environmental-science community with the knowledge and tools to start incorporating the large number of emerging UQ methods into their research. Significance Statement Neural networks are used for many environmental-science applications, some involving life-or-death decision-making. In recent years new methods have been developed to provide much-needed uncertainty estimates for NN predictions. We seek to accelerate the adoption of these methods in the environmental-science community with an accessible introduction to 1) methods for computing uncertainty estimates in NN predictions and 2) methods for evaluating such estimates.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Reference61 articles.

1. Allen, S., J. Bhend, O. Martius, and J. Ziegel, 2022: Weighted verification tools to evaluate univariate and multivariate forecasts for high-impact weather events. arXiv, 2209.04872v1, https://doi.org/10.48550/arXiv.2209.04872.

2. Calibration of wind speed ensemble forecasts for power generation;Baran, S.,2021

3. Controlled abstention neural networks for identifying skillful predictions for regression problems;Barnes, E.,2021

4. Barnes, E., R. J. Barnes, and N. Gordillo, 2021: Adding uncertainty to neural network regression tasks in the geosciences. arXiv, 2109.07250v1, https://doi.org/10.48550/arXiv.2109.07250.

5. Development and verification of two convection-allowing multi-model ensembles over Western Europe;Beck, J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3