Experimental Quantification of the Sampling Uncertainty Associated with Measurements from PARSIVEL Disdrometers

Author:

Jaffrain Joël1,Berne Alexis1

Affiliation:

1. Laboratoire de Télédétection Environnementale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract

Abstract The variability of the (rain)drop size distribution (DSD) in time and space is an intrinsic property of rainfall, which is of primary importance for various environmental fields such as remote sensing of precipitation, for example. DSD observations are usually collected using disdrometers deployed at the ground level. Like any other measurement of a physical process, disdrometer measurements are affected by noise and sampling effects. This uncertainty must be quantified and taken into account in further analyses. This paper addresses this issue for the Particle Size Velocity (PARSIVEL) optical disdrometer by using a large dataset corresponding to light and moderate rainfall and collected from two collocated PARSIVELs deployed during 15 months in Lausanne, Switzerland. The relative sampling uncertainty associated with quantities characterizing the DSD—namely the total concentration of drops Nt and the median-volume diameter D0—is quantified for different temporal resolutions. Similarly, the relative sampling uncertainty associated with the estimates of the most commonly used weighted moments of the DSD (i.e., the rain-rate R, the radar reflectivity at horizontal polarization Zh, and the differential reflectivity Zdr) is quantified as well for different weather radar frequencies. The relative sampling uncertainty associated with estimates of Nt is below 13% for time steps longer than 60 s. For D0, it is below 8% for D0 values smaller than 1 mm. The associated sampling uncertainty for estimates of R is on the order of 15% at a temporal resolution of 60 s. For Zh, the sampling uncertainty is below 9% for Zh values below 35 dBZ at a temporal resolution of 60 s. For Zdr values below 0.75 dB, the sampling uncertainty is below 36% for all temporal resolutions. These analyses provide relevant information for the accurate quantification of the variability of the DSD from disdrometer measurements.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3