Calibration, Validation, and Analysis of an Empirical Algorithm for the Retrieval of Wave Spectra from HF Radar Sea Echo

Author:

Lopez Guiomar1,Conley Daniel C1,Greaves Deborah1

Affiliation:

1. School of Marine Science and Engineering, Plymouth University, Plymouth, Devon, United Kingdom

Abstract

AbstractThe accuracy of the wave products retrieved by a 12-MHz high-frequency (HF) phased-array radar is evaluated for a 5-month period. The two stations composing the system were deployed in 2011 to overlook the Wave Hub, a test site for marine renewable energy devices located on the southwestern coast of the United Kingdom. The system was conceived and configured to reduce the inaccuracies introduced by short time averaging and minimal overlap between stations, both associated with the most traditional HF radar deployments, whose primary activity is current measurement. Wave spectra were retrieved by an empirical algorithm distributed with Wellen Radars (WERA), which were calibrated using in situ measurements collected within the radar footprint. Evaluated through comparison against measurements acquired by three in situ devices, the results revealed estimates of significant wave height with nearly zero bias, linear correlations higher than 90%, and RMS errors that range from 29 to 44 cm. The relative error of wave energy period comparisons was within 10% for periods between 8 and 13 s, while both under- and overestimations were observed above and below that range, respectively. The validation demonstrated that when locally calibrated, the algorithm performs better than in its original form in all metrics considered. Observed discrepancies are mainly attributable to single-site estimations, antenna sidelobes, and the effect of the second-harmonic peaks of the Doppler spectrum.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3