Developments in Scope and Availability of HF Radar Wave Measurements and Robust Evaluation of Their Accuracy

Author:

Wyatt Lucy R.12ORCID,Green J. J.1ORCID

Affiliation:

1. Seaview Sensing Ltd., Sheffield S10 3GR, UK

2. School of Mathematics and Statistics, University of Sheffield, Sheffield S10 2TN, UK

Abstract

HF radar systems form part of many operational coastal monitoring systems providing near-real-time surface currents for many useful applications. Although wave measurements have been possible with these systems for many years, they have not yet been adopted widely for operational monitoring because they have not been thought to be sufficiently accurate or reliable. However, the value of such data is beginning to be appreciated, and this is motivating more work on wave measurement with HF radar systems with many more papers on accuracy assessment and data availability appearing in the literature. In this paper, the wave measurement capability, limitations, and differences between different radar types are reviewed, and methods to assess accuracy are discussed and applied to phased array HF radar data obtained from the University of Plymouth WERA radars using the Seaview Software inversion method during April and November 2012 compared with directional buoy data. Good accuracy over a range of different wave parameters will be demonstrated. Newly available single-radar inversions are shown to be less accurate than dual-radar inversions, although they still provide useful data, and ways to improve performance are discussed. Swell and wind–sea components in the directional spectra are identified, and qualitative agreement with buoy peak parameters is demonstrated. Recommendations are given on statistical methods for the validation of wave parameters.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3