Assessment of OMA Gap-Filling Performances for Multiple and Single Coastal HF Radar Systems: Validation with Drifter Data in the Ligurian Sea

Author:

Corgnati Lorenzo1ORCID,Berta Maristella1ORCID,Kokkini Zoi1ORCID,Mantovani Carlo1ORCID,Magaldi Marcello G.1ORCID,Molcard Anne2ORCID,Griffa Annalisa1ORCID

Affiliation:

1. Istituto Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), 19032 Sede Secondaria di Lerici (SP), Italy

2. Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, 83041 Toulon, France

Abstract

High-frequency radars (HFRs) provide remote information on ocean surface velocity in extended coastal areas at high resolutions in space (O(km)) and time (O(h)). They directly produce radial velocities (in the radar antenna’s direction) combined to provide total vector velocities in areas covered by at least two radars. HFRs are a key element in ocean observing systems, with several important environmental applications. Here, we provide an assessment of the HFR-TirLig network in the NW Mediterranean Sea, including results from the gap-filling open-boundary modal analysis (OMA) using in situ velocity data from drifters. While the network consists of three radars, only two were active during the assessment experiment, so the test also includes an area where the radial velocities from only one radar system were available. The results, including several metrics, both Eulerian and Lagrangian, and configurations, show that the network performance is very satisfactory and compares well with the previous results in the literature in terms of both the radial and total combined vector velocities where the coverage is adequate, i.e., in the area sampled by two radars. Regarding the OMA results, not only do they perform equally well in the area sampled by the two radars but they also provide results in the area covered by one radar only. Even though obviously deteriorated with respect to the case of adequate coverage, the OMA results can still provide information regarding the velocity structure and speed as well as virtual trajectories, which can be of some use in practical applications. A general discussion on the implications of the results for the potential of remote sensing velocity estimation in terms of HFR network configurations and complementing gap-filling analysis is provided.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3