Low Cloud Detection in Multilayer Scenes using Satellite Imagery with Machine Learning Methods

Author:

Abstract

Abstract The detection of multilayer clouds in the atmosphere can be particularly challenging from passive visible and infrared imaging radiometers since cloud boundary information is limited primarily to the topmost cloud layer. Yet detection of low clouds in the atmosphere is important for a number of applications, including aviation nowcasting and general weather forecasting. In this work, we develop pixel-based machine learning-based methods of detecting low clouds, with a focus on improving detection in multilayer cloud situations and specific attention given to improving the Cloud Cover Layers (CCL) product, which assigns cloudiness in a scene into vertical bins. The Random Forest (RF) and Neural Network (NN) implementations use inputs from a variety of sources, including GOES Advanced Baseline Imager (ABI) visible radiances, infrared brightness temperatures, auxiliary information about the underlying surface, and relative humidity (which holds some utility as a cloud proxy). Training and independent validation enlists near-global, actively-sensed cloud boundaries from the radar and lidar systems onboard the CloudSat and CALIPSO satellites. We find that the RF and NN models have similar performances. The probability of detection (PoD) of low cloud increases from 0.685 to 0.815 when using the RF technique instead of the CCL methodology, while the false alarm ratio decreases. The improved PoD of low cloud is particularly notable for scenes that appear to be cirrus from an ABI perspective, increasing from 0.183 to 0.686. Various extensions of the model are discussed, including a nighttime-only algorithm and expansion to other satellite sensors.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3