CACM-Net: Daytime Cloud Mask for AGRI Onboard the FY-4A Satellite

Author:

Yang Jingyuan1ORCID,Qiu Zhongfeng23ORCID,Zhao Dongzhi4,Song Biao5,Liu Jiayu4,Wang Yu4ORCID,Liao Kuo6,Li Kailin7

Affiliation:

1. School of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China

2. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. SANYA Oceanographic Laboratory, Sanya 572000, China

4. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China

5. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

6. Fujian Meteorological Disaster Prevention Technology Center, Fuzhou 350007, China

7. Fujian Institute of Meteorological Sciences, Fuzhou 350007, China

Abstract

Accurate cloud detection is a crucial initial stage in optical satellite remote sensing. In this study, a daytime cloud mask model is proposed for the Advanced Geostationary Radiation Imager (AGRI) onboard the Fengyun 4A (FY-4A) satellite based on a deep learning approach. The model, named “Convolutional and Attention-based Cloud Mask Net (CACM-Net)”, was trained using the 2021 dataset with CALIPSO data as the truth value. Two CACM-Net models were trained based on a satellite zenith angle (SZA) < 70° and >70°, respectively. The study evaluated the National Satellite Meteorological Center (NSMC) cloud mask product and compared it with the method established in this paper. The results indicate that CACM-Net outperforms the NSMC cloud mask product overall. Specifically, in the SZA < 70° subset, CACM-Net enhances accuracy, precision, and F1 score by 4.8%, 7.3%, and 3.6%, respectively, while reducing the false alarm rate (FAR) by approximately 7.3%. In the SZA > 70° section, improvements of 12.2%, 19.5%, and 8% in accuracy, precision, and F1 score, respectively, were observed, with a 19.5% reduction in FAR compared to NSMC. An independent validation dataset for January–June 2023 further validates the performance of CACM-Net. The results show improvements of 3.5%, 2.2%, and 2.8% in accuracy, precision, and F1 scores for SZA < 70° and 7.8%, 11.3%, and 4.8% for SZA > 70°, respectively, along with reductions in FAR. Cross-comparison with other satellite cloud mask products reveals high levels of agreement, with 88.6% and 86.3% matching results with the MODIS and Himawari-9 products, respectively. These results confirm the reliability of the CACM-Net cloud mask model, which can produce stable and high-quality FY-4A AGRI cloud mask results.

Funder

East China Collaborative Innovation Fund for Meteorological Science and Technology

Advanced Program for FY Satellite Applications 2022

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3