Correcting Daytime Thermal Offset in Unventilated Pyranometers

Author:

Serrano A.1,Sanchez G.1,Cancillo M. L.1

Affiliation:

1. Department of Physics, University of Extremadura, Badajoz, Spain

Abstract

AbstractA main source of error in solar radiation measurements is the thermal offset inherent to pyranometers. Despite acknowledgment of its importance, its correction has been widely ignored for several decades. This neglect may have caused a generalized underestimation in solar radiation measurements. This study focuses on the correction of this error in solar irradiance measurements. For this aim a plethora of correction models built as a linear combination of several environmental variables related to the ambient temperature and to the incoming radiation were proposed. The models are fitted to experimental measurements obtained during capping events and, finally, their performance is evaluated and compared. The main results indicate that models with only one independent variable moderately correct the thermal offset error. These simple models are useful when no additional instrumentation other than the pyranometer is available. On the other hand, the more complex models show the best performance, with a coefficient of determination R2 over 0.8, an RMSE under 2 W m−2, and an absolute value of mean bias error (MBE) under 0.5 W m−2. Additionally, these models are used to study the differences between nighttime and daytime correction, revealing the unsuitability of using nighttime-fitted models to correct the daytime thermal offset. The general validity of the models is tested by their application to two different pyranometers. Results indicate that, whereas the factors involved in the best-performing models are the same, the values of the loading coefficients differ and therefore must be specifically calculated for each pyranometer.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3