Polarimetric Radar Observations of Biological Scatterers in Hurricanes Irene (2011) and Sandy (2012)

Author:

Van Den Broeke Matthew S.1

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Abstract

AbstractBiological scatterers, consisting of birds and insects, may become trapped near the circulation center of tropical cyclones, particularly if a well-developed eyewall is present. These scatterers may be observed using weather radar, where they may appear to the radar operator as areas of light precipitation. Polarimetric radar characteristics of these scatterers, informed by additional observations of known bioscatter, include a combination of very high differential reflectivity (3–7.9 dB) and very low copolar correlation coefficient (0.3–0.8). Polarimetric radar observations of bioscatter are presented for Hurricane Irene (2011) and Hurricane Sandy (2012). In these storms, the bioscatter signature first appeared at the 0.5° elevation angle at a distance of 100–120 km from the radar. The signature appeared on successively higher tilts as the circulation center neared the radar, and its areal coverage in constant altitude plan position indicator (CAPPI) slices was primarily governed by the distribution of convection in the eye and by the timing of landfall. The highest altitude at which the signature appears may represent the inversion level within certain tropical cyclone eyes. For Hurricane Irene, inland observations of oceanic bird species support biological transport. Knowledge of the bioscatter signature has value to meteorologists monitoring tropical cyclones within the range of a polarimetric radar, possible value for estimating inversion height changes within the eyes of well-structured tropical cyclones, and value to biologists who wish to estimate the magnitude of biological transport in tropical cyclones.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference55 articles.

1. The use of insects as tracers for “clear-air” boundary-layer studies by Doppler radar;Achtemeier;J. Atmos. Oceanic Technol.,1991

2. Spectral density of polarimetric variables separating biological scatterers in the VAD display;Bachmann;J. Atmos. Oceanic Technol.,2007

3. Region 9—Hudson-Delaware;Bochnik;Kingbird,2011

4. Migrating birds: Remote sensing with radar in the Great Lakes Basin;Bonter;Conserv. Biol.,2009

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3