Affiliation:
1. Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
Abstract
AbstractBiological scatterers, consisting of birds and insects, may become trapped near the circulation center of tropical cyclones, particularly if a well-developed eyewall is present. These scatterers may be observed using weather radar, where they may appear to the radar operator as areas of light precipitation. Polarimetric radar characteristics of these scatterers, informed by additional observations of known bioscatter, include a combination of very high differential reflectivity (3–7.9 dB) and very low copolar correlation coefficient (0.3–0.8). Polarimetric radar observations of bioscatter are presented for Hurricane Irene (2011) and Hurricane Sandy (2012). In these storms, the bioscatter signature first appeared at the 0.5° elevation angle at a distance of 100–120 km from the radar. The signature appeared on successively higher tilts as the circulation center neared the radar, and its areal coverage in constant altitude plan position indicator (CAPPI) slices was primarily governed by the distribution of convection in the eye and by the timing of landfall. The highest altitude at which the signature appears may represent the inversion level within certain tropical cyclone eyes. For Hurricane Irene, inland observations of oceanic bird species support biological transport. Knowledge of the bioscatter signature has value to meteorologists monitoring tropical cyclones within the range of a polarimetric radar, possible value for estimating inversion height changes within the eyes of well-structured tropical cyclones, and value to biologists who wish to estimate the magnitude of biological transport in tropical cyclones.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献