Polarimetric Radar Observations of Biological Scatterers in the Eye of Typhoon Lekima (2019)

Author:

Huang Kehui123ORCID,Huang Hao45ORCID,Gu Tiecheng123,Wang Bo123ORCID,Lou Chengwu1

Affiliation:

1. Wenzhou Meteorological Bureau Wenzhou China

2. Wenzhou Key Laboratory of Typhoon Monitoring and Forecasting Technology Wenzhou China

3. Wenzhou Meteorological Academician Workstation Wenzhou China

4. Key Laboratory of Mesoscale Severe Weather/MOE and School of Atmospheric Sciences Nanjing University Nanjing China

5. Key Laboratory of Radar Meteorology China Meteorology Administration Nanjing China

Abstract

AbstractTropical cyclones not only cause strong winds and heavy rainfall, but they can also facilitate the transport of birds and insects from tropical regions to areas along their paths. Before super Typhoon Lekima made landfall in 2019, an operational polarimetric radar in Wenzhou City observed biological scatterers in the typhoon's eye. These scatterers were likely birds and insects that were trapped in the calm center of the typhoon by strong winds and heavy rain. The polarimetric variables of these biological scatterers had specific characteristics: low reflectivity factor (ZH) values with a median of 7.5 dBZ, low cross‐correlation coefficient (ρhv) values with a median of 0.65, large differential reflectivity (ZDR) values with a median of 2.8 dB and a maximum of ∼7.8 dB, and widely‐distributed differential phase (ΦDP) values with 25th and 75th percentiles ranging from 1.8° to 36.0° and a median of 20.1°. When the edge of the eye reached the coastline, the birds and insects landed, with the biological scatterer signature changing from a circular shape to a band shape. We further compared Lekima with Atlantic Hurricane Irene which happened in 2011, and both storms had similar polarimetric characteristics contributed by both birds and insects. However, the biological echoes in Lekima better exhibited the characteristics of birds with a larger proportion of samples with ZDR lower than 5 dB as well as large ΦDP and low ρhv values. This finding could help to understand the role of typhoons in driving biological migration between oceans and/or islands and continents.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3