Improved AIRS Temperature and Moisture Soundings with Local A Priori Information for the 1DVAR Method

Author:

Jang Hyun-Sung1,Sohn Byung-Ju1,Chun Hyoung-Wook2,Li Jun3,Weisz Elisabeth3

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

2. Korea Institute of Atmospheric Prediction Systems, Dongjak-gu, Seoul, South Korea

3. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

AbstractA moving-window regression technique was developed for obtaining better a priori information for one-dimensional variational (1DVAR) physical retrievals. Using this technique regression coefficients were obtained for a specific geographical 10° × 10° window and for a given season. Then, regionally obtained regression retrievals over East Asia were used as a priori information for physical retrievals. To assess the effect of improved a priori information on the accuracy of the physical retrievals, error statistics of the physical retrievals from clear-sky Atmospheric Infrared Sounder (AIRS) measurements during 4 months of observation (March, June, September, and December of 2010) were compared; the results obtained using new a priori information were compared with those using a priori information from a global set of training data classified into six classes of infrared (IR) window channel brightness temperature. This comparison demonstrated that the moving-window regression method can successfully improve the accuracy of physical retrieval. For temperature, root-mean-square error (RMSE) improvements of 0.1–0.2 and 0.25–0.5 K were achieved over the 150–300- and 900–1000-hPa layers, respectively. For water vapor given as relative humidity, the RMSE was reduced by 1.5%–3.5% above the 300-hPa level and by 0.5%–1% within the 700–950-hPa layer.

Funder

Korea Meteorological Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3