A Variational Interpolation Method for Gridding Weather Radar Data

Author:

Brook Jordan P.1,Protat Alain2,Soderholm Joshua S.2,Warren Robert A.2,McGowan Hamish1

Affiliation:

1. a Atmospheric Observations Research Group, University of Queensland, Saint Lucia, Queensland, Australia

2. b Science and Innovation Group, Australian Bureau of Meteorology, Docklands, Victoria, Australia

Abstract

Abstract Observations made by weather radars play a central role in many aspects of meteorological research and forecasting. These applications commonly require that radar data be supplied on a Cartesian grid, necessitating a coordinate transformation and interpolation from the radar’s native spherical geometry using a process known as gridding. In this study, we introduce a variational gridding method and, through a series of theoretical and real data experiments, show that it outperforms existing methods in terms of data resolution, noise filtering, spatial continuity, and more. Known problems with existing gridding methods (Cressman weighted average and nearest neighbor/linear interpolation) are also underscored, suggesting the potential for substantial improvements in many applications involving gridded radar data, including operational forecasting, hydrological retrievals, and three-dimensional wind retrievals.

Funder

Guy Carpenter & Company Pty Ltd

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radar and environment-based hail damage estimates using machine learning;Atmospheric Measurement Techniques;2024-01-19

2. Segmentation of polarimetric radar imagery using statistical texture;Atmospheric Measurement Techniques;2023-10-12

3. The Effects of Spatial Interpolation on a Novel, Dual-Doppler 3D Wind Retrieval Technique;Journal of Atmospheric and Oceanic Technology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3