Radar and environment-based hail damage estimates using machine learning

Author:

Ackermann Luis,Soderholm JoshuaORCID,Protat AlainORCID,Whitley RhysORCID,Ye Lisa,Ridder Nina

Abstract

Abstract. Large hail events are typically infrequent, with significant time gaps between occurrences at specific locations. However, when these events do happen, they can cause rapid and substantial economic losses within a matter of minutes. Therefore, it is crucial to have the ability to accurately observe and understand hail phenomena to improve the mitigation of this impact. While in situ observations are accurate, they are limited in number for an individual storm. Weather radars, on the other hand, provide a larger observation footprint, but current radar-derived hail size estimates exhibit low accuracy due to horizontal advection of hailstones as they fall, the variability of hail size distributions (HSDs), complex scattering and attenuation, and mixed hydrometeor types. In this paper, we propose a new radar-derived hail product developed using a large dataset of hail damage insurance claims and radar observations. We use these datasets coupled with environmental information to calculate a hail damage estimate (HDE) using a deep neural network approach aiming to quantify hail impact, with a critical success index of 0.88 and a coefficient of determination against observed damage of 0.79. Furthermore, we compared HDE to a popular hail size product (MESH), allowing us to identify meteorological conditions that are associated with biases on MESH. Environments with relatively low specific humidity, high CAPE and CIN, low wind speeds aloft, and southerly winds at the ground are associated with a negative MESH bias, potentially due to differences in HSD, hail hardness, or mixed hydrometeors. In contrast, environments with low CAPE, high CIN, and relatively high specific humidity aloft are associated with a positive MESH bias.

Publisher

Copernicus GmbH

Reference39 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/, 2015. a

2. Allen, J. T. and Tippett, M. K.: The Characteristics of United States Hail Reports: 1955–2014, E-Journal of Severe Storms Meteorology, 10, 1–31, https://doi.org/10.55599/EJSSM.V10I3.60, 2015. a

3. Blong, R.: Residential building damage and natural perils: Australian examples and issues, Build. Res. Inf., 32, 379–390, https://doi.org/10.1080/0961321042000221007, 2007. a

4. Brook, J. P., Protat, A., Soderholm, J., Carlin, J. T., McGowan, H., and Warren, R. A.: HailTrack–Improving Radar-Based Hailfall Estimates by Modeling Hail Trajectories, J. Appl. Meteorol. Clim., 60, 237–254, https://doi.org/10.1175/JAMC-D-20-0087.1, 2021. a, b, c, d

5. Brook, J. P., Protat, A., Soderholm, J. S., Warren, R. A., and McGowan, H.: A Variational Interpolation Method for Gridding Weather Radar Data, J. Atmos. Ocean. Tech., 39, 1633–1654, https://doi.org/10.1175/JTECH-D-22-0015.1, 2022. a, b

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3