Affiliation:
1. University of Melbourne, and Australian Research Council Centre of Excellence for Climate Extremes (CLEX), University of Melbourne, Melbourne, Australia
2. Monash University, Melbourne, Victoria, Australia
3. Australian Bureau of Meteorology, Melbourne, Victoria, Australia
Abstract
AbstractCloud-top height (CTH) and cloud-top temperature (CTT) retrieved from the Himawari-8 observations are evaluated using the active shipborne radar–lidar observations derived from the 31-day Clouds, Aerosols, Precipitation Radiation and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment in 2016 and 1-yr observations from the spaceborne Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud product over a large sector of the Southern Ocean. The results show that the Himawari-8 CTH (CTT) retrievals agree reasonably well with both the shipborne estimates, with a correlation coefficient of 0.837 (0.820), a mean bias error of 0.226 km (−2.526°C), and an RMSE of 1.684 km (10.069°C). In the comparison with CALIOP, the corresponding quantities are found to be 0.786 (0.480), −0.570 km (1.343°C), and 2.297 km (25.176°C). The Himawari-8 CTH (CTT) generally falls between the physical CTHs observed by CALIOP and the shipborne radar–lidar estimates. However, major systematic biases are also identified. These errors include (i) a low (warm) bias in CTH (CTT) for warm liquid cloud type, (ii) a cold bias in CTT for supercooled liquid water cloud type, (iii) a lack of CTH at ~3 km that does not have a corresponding gap in CTT, (iv) a tendency of misclassifying some low-/mid-top clouds as cirrus and overlap cloud types, and (v) a saturation of CTH (CTT) around 10 km (−40°C), particularly for cirrus and overlap cloud types. Various challenges that underpin these biases are also explored, including the potential of parallax bias, low-level inversion, and cloud heterogeneity.
Funder
Centre of Excellence for Electromaterials Science, Australian Research Council
Australian Research Counci
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献