Adaptive Variational Mode Decomposition Method for Eliminating Instrument Noise in Turbulence Detection

Author:

He Yang1,Sheng Zheng12,Zhu Yanwei3,He Mingyuan1

Affiliation:

1. a College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

2. b Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Changsha, China

3. c College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China

Abstract

AbstractNoise removal is a key issue in the retrieval of turbulence from meteorological radiosonde data using the method proposed by Thorpe. Only by reducing as much as possible the influence of noise in the potential temperature fluctuations can the retrieval results reflect the turbulence characteristics of the real atmosphere. In this paper, an adaptive variational mode decomposition (VMD) method is proposed that is used to remove noise fluctuations from the potential temperature profile, and particle swarm optimization and mutual information are used to optimize the preset VMD parameters. The Thorpe method is applied to the denoised potential temperature profile to identify and characterize turbulent regions. The results show that the adaptive VMD method is very effective for denoising the potential temperature profile in both simulation experiments and actual detection data. The real turbulence overturn can be selected from the inversions by optimal smoothing and statistical tests. This method is an improvement on the Wilson method and allows the Thorpe method to be applied to daytime sounding data, avoiding the confusion between noise and turbulence that results in the distortion of the turbulence scale.

Funder

the National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3